45 research outputs found

    A tool for parameter-space explorations

    Get PDF
    A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.Comment: 4 pages, 5 figures, CSP 2014 conferenc

    Friendly-rivalry solution to the iterated nn-person public-goods game

    Full text link
    Repeated interaction promotes cooperation among rational individuals under the shadow of future, but it is hard to maintain cooperation when a large number of error-prone individuals are involved. One way to construct a cooperative Nash equilibrium is to find a `friendly-rivalry' strategy, which aims at full cooperation but never allows the co-players to be better off. Recently it has been shown that for the iterated Prisoner's Dilemma in the presence of error, a friendly rival can be designed with the following five rules: Cooperate if everyone did, accept punishment for your own mistake, punish defection, recover cooperation if you find a chance, and defect in all the other circumstances. In this work, we construct such a friendly-rivalry strategy for the iterated nn-person public-goods game by generalizing those five rules. The resulting strategy makes a decision with referring to the previous m=2n1m=2n-1 rounds. A friendly-rivalry strategy for n=2n=2 inherently has evolutionary robustness in the sense that no mutant strategy has higher fixation probability in this population than that of a neutral mutant. Our evolutionary simulation indeed shows excellent performance of the proposed strategy in a broad range of environmental conditions when n=2n= 2 and 33.Comment: 19 pages, 6 figure

    Grouping promotes both partnership and rivalry with long memory in direct reciprocity

    Full text link
    Biological and social scientists have long been interested in understanding how to reconcile individual and collective interests in iterated Prisoner's Dilemma. Many effective strategies have been proposed, and they are often categorized into one of two classes, `partners' and `rivals.' More recently, another class, `friendly rivals,' has been identified in longer-memory strategy spaces. Friendly rivals qualify as both partners and rivals: They fully cooperate with themselves, like partners, but never allow their co-players to earn higher payoffs, like rivals. Although they have appealing theoretical properties, it is unclear whether they would emerge in evolving population because most previous works focus on memory-one strategy space, where no friendly rival strategy exists. To investigate this issue, we have conducted large-scale evolutionary simulations in well-mixed and group-structured populations and compared the evolutionary dynamics between memory-one and memory-three strategy spaces. In a well-mixed population, the memory length does not make a major difference, and the key factors are the population size and the benefit of cooperation. Friendly rivals play a minor role because being a partner or a rival is often good enough in a given environment. It is in a group-structured population that memory length makes a stark difference: When memory-three strategies are available, friendly rivals become dominant, and the cooperation level nearly reaches a maximum, even when the benefit of cooperation is so low that cooperation would not be achieved in a well-mixed population. This result highlights the important interaction between group structure and memory lengths that drive the evolution of cooperation.Comment: 18 pages, 11 figure

    Multilayer weighted social network model

    Full text link
    Recent empirical studies using large-scale data sets have validated the Granovetter hypothesis on the structure of the society in that there are strongly wired communities connected by weak ties. However, as interaction between individuals takes place in diverse contexts, these communities turn out to be overlapping. This implies that the society has a multilayered structure, where the layers represent the different contexts. To model this structure we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We find that when merging such WSN models, a sufficient amount of interlayer correlation is needed to maintain the relationship between topology and link weights, while these correlations destroy the enhancement in the community overlap due to multiple layers. To resolve this, we devise a geographic multilayer WSN model, where the indirect interlayer correlations due to the geographic constraints of individuals enhance the overlaps between the communities and, at the same time, the Granovetterian structure is preserved.Comment: 9 pages, 9 figure

    Sampling networks by nodal attributes

    Full text link
    In a social network individuals or nodes connect to other nodes by choosing one of the channels of communication at a time to re-establish the existing social links. Since available data sets are usually restricted to a limited number of channels or layers, these autonomous decision making processes by the nodes constitute the sampling of a multiplex network leading to just one (though very important) example of sampling bias caused by the behavior of the nodes. We develop a general setting to get insight and understand the class of network sampling models, where the probability of sampling a link in the original network depends on the attributes hh of its adjacent nodes. Assuming that the nodal attributes are independently drawn from an arbitrary distribution ρ(h)\rho(h) and that the sampling probability r(hi,hj)r(h_i , h_j) for a link ijij of nodal attributes hih_i and hjh_j is also arbitrary, we derive exact analytic expressions of the sampled network for such network characteristics as the degree distribution, degree correlation, and clustering spectrum. The properties of the sampled network turn out to be sums of quantities for the original network topology weighted by the factors stemming from the sampling. Based on our analysis, we find that the sampled network may have sampling-induced network properties that are absent in the original network, which implies the potential risk of a naive generalization of the results of the sample to the entire original network. We also consider the case, when neighboring nodes have correlated attributes to show how to generalize our formalism for such sampling bias and we get good agreement between the analytic results and the numerical simulations.Comment: 11 pages, 5 figure
    corecore